Active-constraint variable ordering for faster feasibility of mixed integer linear programs
نویسندگان
چکیده
The selection of the branching variable can greatly affect the speed of the branch and bound solution of a mixed-integer or integer linear program. Traditional approaches to branching variable selection rely on estimating the effect of the candidate variables on the objective function. We present a new approach that relies on estimating the impact of the candidate variables on the active constraints in the current LP relaxation. We apply this method to the problem of finding the first feasible solution as quickly as possible. Empirical experiments demonstrate a significant improvement compared to a state-of-the art commercial MIP solver.
منابع مشابه
Faster integer-feasibility in mixed-integer linear programs by branching to force change
Branching in mixed-integer (or integer) linear programming requires choosing both the branching variable and the branching direction. This paper develops a number of new methods for making those two decisions either independently or together with the goal of reaching the first integer-feasible solution quickly. These new methods are based on estimating the probability of satisfying a constraint...
متن کاملA Mathematical Optimization Model for Solving Minimum Ordering Problem with Constraint Analysis and some Generalizations
In this paper, a mathematical method is proposed to formulate a generalized ordering problem. This model is formed as a linear optimization model in which some variables are binary. The constraints of the problem have been analyzed with the emphasis on the assessment of their importance in the formulation. On the one hand, these constraints enforce conditions on an arbitrary subgraph and then g...
متن کاملCIP and MIQP Models for the Load Balancing Nurse-to-Patient Assignment Problem
The load balancing nurse-to-patient assignment problem requires the assignment of nurses to patients to minimize the variance of the nurses’ workload. This challenging benchmark is currently best solved exactly with constraint programming (CP) using the spread constraint and a problem-specific heuristic. We show that while the problem is naturally modelled as a mixed integer quadratic programmi...
متن کاملComparing Mixed-Integer and Constraint Programming for the No-Wait Flow Shop Problem with Due Date Constraints
The impetus for this research was examining a flow shop problem in which tasks were expected to be successively carried out with no time interval (i.e., no wait time) between them. For this reason, they should be completed by specific dates or deadlines. In this regard, the efficiency of the models was evaluated based on makespan. To solve the NP-Hard problem, we developed two mathematical mode...
متن کاملA Feasibility Pump for mixed integer nonlinear programs
Abstract We present an algorithm for finding a feasible solution to a convex mixed integer nonlinear program. This algorithm, called Feasibility Pump, alternates between solving nonlinear programs and mixed integer linear programs. We also discuss how the algorithm can be iterated so as to improve the first solution it finds, as well as its integration within an outer approximation scheme. We r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 110 شماره
صفحات -
تاریخ انتشار 2007